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We unveil the existence of a two-particle bound state in the continuum (BIC) in a one-dimensional
interacting nonreciprocal lattice with a generalized boundary condition. By applying the Bethe-ansatz
method, we can exactly solve the wave function and eigenvalue of the bound state in the continuum band,
which enable us to precisely determine the phase diagrams of BIC. Our results demonstrate that the
nonreciprocal hopping can delocalize the bound state and thus shrink the region of BIC. By analyzing the
wave function, we identify the existence of two types of BICs with different spatial distributions and
analytically derive the corresponding threshold values for the breakdown of BICs. The BIC with similar
properties is also found to exist in another system with an impurity potential.
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Introduction—An intriguing property of non-Hermitian
systems is the sensitivity of wave functions and spectra to
boundary conditions and local impurity. Intensive studies
have unveiled that non-Hermitian nonreciprocal systems
can exhibit some novel non-Hermitian phenomena, e.g.,
non-Hermitian skin effect (NHSE) [1-6] and scale-free
localization [7-11], characterized by the emergence of
diverse localizing behaviors and changes of spectrum
structures when translational invariance is locally broken,
either by introducing an impurity or by tuning the boundary
coupling strength [12,13]. While most novel phenomena
and concepts about the non-Hermitian effects are built
based on the non-interacting systems, recently there is
growing interest in exploring non-Hermitian phenomena in
interacting systems [14—19].

The concept of bound state in the continuum (BIC) was
initially proposed by von Neumann and Wigner, which
refers to the eigenenergies of the bound states that can be
embedded in the continuum [20,21]. Recently, BICs attracted
much renewed interest both theoretically and experimentally
[22-29]. The BICs are found to be present in many physical
systems, including the Hubbard model [30-36], optical
systems [37-41], etc., and have caused many applications
such as enhanced optical nonlinearity [42—44], sensing
[45-47], lasers [48-51], and filtering [52]. Usually, the
emergence of BIC in a single particle system requires certain
exotic potentials. For multiparticle systems, BIC can be
created via the interplay of local potential and particle-particle
interaction [30,31,33,35]. It was demonstrated that BICs can
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be engineered in impurity systems by adding interparticle
interaction [30,31]. Meanwhile, edge states in the continuum
are also found in interacting topological models [53,54].
Usually, bound states must have quantized energies in a
Hermitian system, whereas free states form a continuum.
However, this principle may fail for non-Hermitian
systems [55]. Some works demonstrate that continuum of
bound states occur in non-Hermitian systems [55-57]. In the
presence of NHSE, a local bound state may be delocalized
depending on the competition between nonreciprocal hop-
ping and impurity strength. Studies on the impurity model in
nonreciprocal lattices reveals that the bound state disappears
when it touches the continuum of spectrum [58]. As most
previous studies of BIC focused on the Hermitian systems,
this raises our interest to pursue the BIC in non-Hermitian
system with nonreciprocal hopping and interaction.

In this Letter, we study two-particle BICs in non-
Hermitian lattices and unveil their specific feature and fate
under the influence of the nonreciprocal hopping. To be
concrete, we consider two interacting bosons in a nonrecip-
rocal lattice with GBC or an impurity potential. Although this
model is nonintegrable, we demonstrate that the BIC can be
obtained analytically with a similar Bethe-ansatz method.
The analytical expression of wave function and bound energy
enables us to determine the phase diagram of BIC exactly.
We unveil the existence of two kinds of BICs, characterized
by different spatial distributions, which are delocalized by
increasing the nonreciprocal hopping. By analyzing the wave
function, we derive analytical expressions of threshold
values for the breakdown of BICs. Our analytical results
provide a firm ground for understanding the fate of BICs in
non-Hermitian systems.

© 2024 American Physical Society
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Model and spectrum—The model we consider consists
of two identical spinless bosons in the Hatano-Nelson
model with generalized boundary conditions (GBCs), as
illustrated in Fig. 1(a), which can be described by

where @} (&,) is the boson creation (annihilation) operator

at site x, teY and te~Y are imbalanced hopping amplitudes, y
represents the boundary strength, and f,y,g€R. U is

(a) (©

e band 1 -3
- - - = g a_ >A<110
3
2
\-\.\'y‘L te® 1
-20 0 20
band 2
(®)  second band First band 0.05
1
0.03
05
) 0.01
-g 0 20 0 20
-0.5
Fourth band 05 bands3.4™ X107
-1
10 5 0 5 10 9
Re(E) Third band <' 0 6
(d) . 20 2
107! “ 220 0 20
o BIC BIC M
102 %
a. 10 A P 20 0.15
107 J <0 01
% 20 0:05
-10 -5 0 5 10
-20 0 20
Re(E) X

FIG. 1. (a) Schematics of the two-particle Hatano-
Nelson model with GBCs. (b) The complex spectra of the
system with parameters (g,y7, U) = (0.25,5,-3.5). The color
of each dot represents the fractal dimension FD of different
eigenstates. The three black circles from left to right are the fourth

band E4 = —(y + l/y) + 2cos(k —ig), the second band E, =
—+/U? + 16c0s*(K — ig), and the third band E3 =y + 1/y +
2cos(k — ig), respectlvely. The lattice length is N = 2M = 90.

(c) From top to bottom, we display the density distribution of the
wave function in the first, second, third (or fourth) bands and
BIC, respectively. (d) IPRs for eigenstates with the corresponding
real parts of eigenvalues Re(E) for the system with parameters
(9,7,U) = (0.25,5,-3.5), N = 70 (blue dots), and N = 90 (red
circles).

the interaction strength between particles and we shall
consider the case of attractive interaction with U < 0.
Cases of U > 0 are symmetric to cases of U < 0, thus
we omit them for brevity. We set r = 1 as the unit of energy
in the following calculation. For clear numerical presen-
tation, we put the boundary in the middle of the lattice, and
we label the lattice sites from —L to M and set &i ;= &L 41
a_; = ay.. L =M —1 for even lattice, L = M for odd

lattice.

With wave function |y) = >, -, V2-(V2-1)5, ]
u(xy,x,)ak ak |0), the eigenvalue equation Hl|y) = Ely)
can be rewritten as a homogeneous linear difference

equation about u(x;, x,):

- Z te®u(x, + a,x;) + u(xy,x, + a)l
a==l1

+ Ub,, v, u(x1,Xp) = Eu(xy,x,), (2)

and the equations of GBCs are

- Z te®u(0,x, + a) + Uy ,u(0,x,)
a=%+1

—yedu(l,x,) — eu(—1,x,) = Eu(0, x,), (3)

and

- Z teu(l,x, + a) + Uy ,u(1,x;)

a==1
—e9u(2,x,) —yedu(0,x,) = Eu(l, x,). (4)
In the absence of interaction (U = 0), the model reduces to
the Hatano-Nelson (HN) model [59,60] with GBC [7,12],
which can be exactly solvable in the whole parameter
region [12]. The boundary parameter y interpolates the
OBC (y =0) to PBC (y = 1).

Our goal is to address the eigenvalue problem,
with a focus on the bound states where both particles
are confined near the boundary sites at x = O and 1. To geta
straightforward view of the BIC, we display the spectra of
the system with y = 5 in Fig. 1(b), including four complex
continuum bands [61], a BIC and two separated bound
states above or below the bands, where eigenvalues of the
three bound states are all real. The spectral of the first band
is given by 2cos(k; —ig) + 2cos(k, — ig) with ki, k, €
[0,27) and interval of real parts in [—4 cosh g, 4 cosh g,
corresponding to scattering states of two particles in the HN
lattice. In comparison with free particles, the scattering
eigenstates have phase shifts at boundaries and the location
where the two particles interact. A typical distribution of
random chosen wave function in this band is displayed in
the first row of Fig. 1(c). The spectral of the second

band is given by —/U?+ 16cos?(K —ig) for U < 0 and

\/U*+16¢0s*(K —ig) for U > 0 with K € [0, 27), which
corresponds to the delocalized molecule states. The interval
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of the real part is [—/U? + 16cosh?g, —\/U? — 16sinh’g|
for U < —4sinh |g] and [v/U? - 16sinh?g,

V/ U* + 16cosh?g| for U > 4sinh|g|. The density distri-

bution of a typical state in this band is presented in the
second row of Fig. 1(c), indicating that two particles are
bound together and distribute along the diagonal line. Here
the asymmetric distribution along the diagonal line is
attributed to the nonreciprocal hopping. States in the third
and fourth bands correspond to scattering states with one
particle bound around the boundary, with the correspond-
ing density distribution shown in the third row of Fig. 1(c).
The energy of the bound particle can be either of
+(y+1/y), while the other is 2cos(k—ig) with
k€[0,2x). Thus the real part of these two bands covers
[y +1/y —2coshg,y + 1/y +2coshg] and [-y—1/y—
2cosh g, —y — 1/y + 2 cosh g, respectively.

To characterize distribution properties of states in these
four bands and bound states, we numerically calculate their
fractal dimension (FD) defined as

FD; = —In(IPR;)/ In(N), (5)

where IPR; = >~ [u;(x;,x,)|* is the inverse participa-
tion ratio. The FDs for the states in the first band, in the
other bands, and bound states are displayed in Fig. 1(b). In
the limit of N — oo, they approach to 2, 1, and O,
respectively, which can be obtained by finite size analysis
[61]. To see it more clearly, we also display the corre-
sponding IPRs with different lattice sizes in Fig. 1(d).
While IPRs of states in continuum bands change with the
lattice size, IPRs of the three bound states are not sensitive
to the change of lattice size. A BIC corresponds to the
bound state with energy falling in [—4 cosh g, 4 cosh g].

Analytical solution of BIC—Although general eigen-
states of our model (1) are not solvable, we show that the
BIC can be analytically derived by taking the Bethe ansatz
type (BAT) wave function [61]

(31, %2) = 0 (x1, X)), (6)
where
fi(xr.x2), 0<x <x
fz(xlv-xZ)’ X1 SO<X2,
— —X5,—X1), X <x <0
uhO(xl,xz): fl( 2 1) 11X X (7)
, fl(x27x1)’ 0<)C2 < Xq,
fa(xa,x1), X, <0< xyq,
—f1(=x1,—x2), X <x; <0,
with

iky _ 2 ,—ik,
fi(x1.x) = e “re y ¢ etkixitikyx,

2iy sin ky
iky (2 _

e ](y 1) e—ikllerikzxz
2iy sin k|
ik 2

e (1—y )eikle—ik]xz (8)

217/ sin k2 ’

and
fz(xhxz) — eik|x1+ik2x2 _ eik1+ikze—ik2x|—ik]x2' (9)

To correctly describe a bound state, from (6), we see that
leh1| > el9! and |e’*2| < e719l are required. Meanwhile, k; ,
are given by
l)y—y-U=¢eh

y = e_ikz, — ek, (10)

The exact energy of bound state E, = —2cos k| — 2 cos k,
has two possibilities: E,; =—1/y—y—+/(y=1/y+U)>+4
for 1/y—y>U and Eyy=—1/y—y+/(y=1/y+U)> +4
for 1/y —y < U. Here, we can see that the energy of the
bound state is independent of the parameter g. However, the
wave function is different from the Hermitian case by a
factor of e~9(xi1+x2),

Phase diagram of BIC—To maintain the state of
E, = E,; as a bound state, the condition U, ; <U < U,
must be satisfied, where U, = 2(el’/y — e l9ly) cosh g
and U, = 1/y —y — 2sinh |g|, which forms areas A. This
region shrinks with increasing g, as shown in Figs. 2(a)-
2(d). Since E,; < min{—4 cosh g, —\/U? + 16cosh?g,
+(y + 1/y) — 2 — 2 cosh g}, the bound state is below
all four continuum bands in the real axis and thus is not a
BIC. A typical spectrum structure for the system marked by
the square in the region of A is displayed in Fig. 2(el). The
two transfer points U;; and U,, are determined by the
touching points that E,; touches the second and fourth
continuum bands, respectively.

Similarly, the condition to maintain the state of £, = E},
as a bound state is U,; < U < U,, with Uy, =1/y -
y + 2sinh|g| and U,,=-2(el% /y+e79ly)sinh|g|, which
forms areas B;, as shown in Fig. 2. As the value of g
increases, the corresponding regions also shrink. The points
U = U,; and U = U, are just the touching points of £,

with second and fourth bands. We can prove that E,, >
max{—+/U? + 16cos?(x/2 — ig),—(y + 1/y) +2cosh(g)}
and E, < (y + 1/y) —2cosh(g). Thus this bound state
cannot fall in the second to fourth bands. It may fall within
the first continuum band, if an additional condition E, >
—4 cosh g is fulfilled, which gives rise to the area B; as
displayed in Fig. 2. In the parameter region B, there exists a
BIC with a typical spectrum structure depicted in Fig. 1(b).
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FIG. 2. (a)-(d) The phase diagram for the bound state (9) with parameter g = 0, 0.15, 0.25, and 0.5, respectively. The bound state with

E,; exists in the region A, which is below all four real parts of continuum bands. In the region of By, the state with energy E,, is a bound
state in the first continuum band 2 cos(k; + ig) 4+ 2 cos(k, + ig). In the region of B,, this state is below the real part of the first and third
continuum bands and above the real part of the second and fourth continuum bands. The condition distinguishing those two regions is
E,, = 4cosh g denoted by the black dotted lines. The blue dashed lines represent y = €39, When y < €39, none of the third and fourth
bands and bound state (9) exist. The red dotted-dashed lines represent g, = g,, where g, =Inh(l/y—y—-U) and ¢, =
In[y/h(1/y —y — U)]/2 with h(x) = (Vx> +4 + |x|)/2. The black cross represents (7, U) = (2.855434,—2) and the black circle
represents (y, U) = (5, —2). The three green squares in (c) represent (7, U) = (5, -3.5), (5, —5.8), and (7, —5.8), which are points in the
regions B, A, and B,, respectively. (¢) The spectra of the system with parameters (g,y, U) = (0.25,5,-5.8) and (g,7,U) =
(0.25,5,-5.8).

_ eik1+ikze—ik1x] . ox > 0’

xISO.

(11)

As a comparison, a typical spectrum for the system marked e'kon
by the square in region of B, is displayed in Fig. 2(e2). up(x1,0) =

eiklxl _ eikl +iky e—ikzx]
Although g does not change the bound energy, it changes '

the continuous spectrum and affects the fate of BIC by
modifying the wave function. With the increase in g, the
first band expands in both directions along the real axis,
while the second and fourth bands also increase in size.
When the 2nd or 4th band touches the bound energy, the
bound state merges into this band and vanishes. The
touching point gives rise to a threshold value g; =
Inh(l/y—y—U) with h(x)= (Vx> +4+]x])/2 or
g =In[y/h(1/y —y — U)]/2, determined by either E;, =
—y—1/y +2cosh|g,| or E;, = —/U? —16sinh? g,. In
the parameter space spanned by y and U, the relation
917, U) = g:(y,U) gives a dividing line distinguishing
which band expanding to E, first, as shown in Figs. 2(a)—
2(d) by the dashed-dotted red lines. The bound state above the
dividing line merges into the fourth band and vanishes when
g > g1, whereas the bound state below the dividing line
merges into the second band when g > g,. Besides the
threshold values determined by different relations, the
BICs above and below the dividing line exhibit different
spatial distributions, as displayed in Figs. 3(al)-3(cl) and
Figs. 3(a2)-3(c2), respectively. Here, density distributions
shown in Figs. 3(al)-3(cl) correspond to the circles in
Figs. 2(a)-2(c), and the ones in Figs. 3(a2) and 3(b2)
correspond to the crosses in Figs. 2(a) and 2(b), respectively.

With the increase in g, the BIC is delocalized either
along the x; and x, axis or the diagonal direction x; = x, as
shown in Fig. 3. The wave function along the axis-x; is
up(x1,0) = e ™1uy 0(x;,0) with

Equation (11) is the superposition of two exponentially
decaying wave functions e~*1*1 and e’*2*1 with exponential
decay factors (EDFs) L,; = —Im(k;) and L, = Im(k,),
respectively. From Eq. (10), it follows that Lj,; =

Inh(l/y —y—U) with h(x) = (Vx*+4+[x])/2 [62]

y=286, U=-2

FIG. 3. (al)—(cl) The density distribution of the BIC with
g=0, g=0.15, and g = g, for the system with y = 2.86 and
U = —2. (a2)—(c2) The density distribution of the BIC with
g=0, g=0.15, and g = g, for the system with y =5 and
U=-2.
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and L;, = Iny. Since L;,; < L, is always fulfilled for BIC,
uy(xy,0) is completely delocalized when g = Lj,; = g,. The
wave function u,(0, x,) has the same properties due to the
exchange symmetry of x; and x,. The wave function (7)
along the diagonal line x; = x,, i.e., u;o(xy,x;), also has
two EDFs: L, =Im(k; + k) =In[y/h(1/y —y — U)]
and Lgp =1Im(k, —k;) =In[yh(l/y —y—U)]. Since
Ly < Lg, up(xy,x,) is completely delocalized along the
diagonal line when g = L,;/2 = ¢,. The analysis of wave
function of BIC gives the threshold value for the breakdown
of BIC as g = min{gl, g2}.

BIC in the impurity model—Next we show that BIC can
be also identified in the two-particle Hatano-Nelson model
with an impurity under periodic boundary condition,
described by

M
. U.i.o. .
H = Z {—eﬂal +1 —€ 9aT+1ax —i—iaiaiaxax
x=-L
+ Vahay, (12)

where the impurity strength V < 0 and U < 0. Similarly,
BIC can be solved exactly by applying the BA method. The
corresponding energy Egjc=—VV2+4+./(V-U)>+4
and the conditions for existence of BIC are V + 2 sinh |g| <
U<V —e29V—2sinh?(2|g))[(V + VVZ +4)/2] and
Egic > —4cosh g. For this system, there are three con-
tinuum bands, the first band 2cos(k; —ig) +2cos(k, —ig)
with ki, k, € [O 2z), the second band sign(U)
VU + —ig) with K€[0,27), and the third

16 cos?

FD

5 '

0 P 1.8 20 0.08
. \ 0.06
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= = 02 0.05

0.5 ‘ (b) -20

FIG. 4. (a),(b) The complex spectra of the system with
parameters (g, V,U) = (0.15,-2.6,-2) and (g,V,U) =
(0.15,-3.5,-2), respectively. The color of each dot represents
the fractal dimension FD of different eigenstates. The two black
circles from left to right are the third band E3 =—V V> +4+
2cos(k—ig) and the second band E, = —+/U?+ 16cos? (K —ig),
respectively. (c),(d) The density distribution of the BIC for the
system with parameters (g,V,U) = (0.15,-2.5,-2) and
(9,V,U) =(0.15,-3.5,-2), respectively. The lattice length is
2M +1 =91.

band —v'V? 4+ 4 + 2 cos(k —
in Figs. 4(a) and 4(b).

The BICs exhibit two kinds of different distributions, as
displayed in Figs. 4(c) and 4(d), leading to different ways to
compete with the nonreciprocal term. The first way is that
the increase of g causes the BIC to lose localization along
the axis of x; and x, when ¢,(V,U) < ¢,(V,U), where
91(V.U)=Inh(V—-U) and 2¢,(V,U)=In[h(V)/h(V-U)]
are the minimum EDFs of the wave function of BIC
along the x; and x, axis and the diagonal direction x; =
x, with g = 0. This BIC will merge into the third band. The
second way is that as the value of g increases, the BIC
becomes extended along the diagonal direction when
¢ (V,U) < g,(V,U). This BIC will merge into the second
band.

Summary and discussion—Using the Bethe ansatz
method, we have obtained the exact solution for the BIC
in the two-particle interacting Hatano-Nelson model with
either generalized boundary conditions or an impurity
potential. Our results demonstrate that the interplay of
interactions, boundary potential, and nonreciprocal hop-
ping can give rise to two types of BICs with different spatial
distributions. The exact wave function and energy of BIC
enable us to get a precise phase diagram of BICs with the
boundaries marking the emergence and breakdown of BICs
being analytically determined. In principle, the BIC may
exist in many-particle interacting systems with impurity,
although no analytical results are available. Numerically,
we demonstrate the existence of BIC in three-particle
system, which can survive in some parameter regions even
in the presence of three-particle interaction [61].

ig), with k € [0, 27), as shown
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